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Deformation mechanisms in polymer crystals 
Part 1 The geometry of the stress-induced phase change of 
polymeric sulphur nitride (SN) x 
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Polymeric sulphur nitride (SN)x has been recently found to undergo a stress-induced 
martensitic transformation from the normal monoclinic phase to a new orthorhombic 
phase. The theories of shear-induced transformations in crystalline solids developed by 
Bevis, Crocker and co-workers have been used to predict the shear modes between the 
two forms of (SN)x. A comparison has been made between the theoretically predicted 
and experimentally measured modes for (SN)x and the transformation has been 
compared with a similar one that is observed in polyethylene. 

1. In t roduc t ion  
The metallic and superconductive properties of 
polymeric sulphur nitride [1-3] have stimulated 
considerable research interest in this polymer. 
(SN)x is produced by the solid-state polymerization 
of crystals of the cyclic dimer $2N2 [4, 5]. Be- 
cause the solid-state reaction and associated re- 
crystallization processes are non-unique, molecular 
scale disorder and twinning is introduced during 
the dimer-to-polymer transformation [6, 7]. De- 
spite these defects, certain polydiacetylenes are 
the only linear organic polymers presently obtain- 
able as large dimension crystals with higher per- 
fection than polymeric sulphur nitride [9-12] .  

It has been recently shown that the monoclinic 
phase of (SN)= that is produced by solid state 
polymerization can be transformed into a new 
phase which has orthorhombic symmetry by 
means of a shear4nduced martensitic transfor- 
mation [13]. The packing of the chains is sub- 
stantially different in the new phase and it is ex- 
pected that the electronic properties of the new 
phase will reflect this difference. Measurement of 
these properties has been impeded by present 
inability to produce fully transformed single 
crystals of the new phase. 

The lattice parameters of the two phases and 
the orientation relationship between these phases 
have been measured by Baughman et  al. [13]. 
Bevis and coworkers [14-16] have developed a 
theory which can be used to predict the trans- 
formation modes between two crystal structures 
that are related by a shear-induced transformation. 
They have used this theory to predict the trans- 
formation modes for the martensitic transformation 
between the orthorhombic and monoclinic forms 
of polyethylene (PE)[16] .  The observed shear 
modes in polyethylene [17, 18] are found to be 
close to those predicted by Bevis and Crellin [16], 
with the modes involving the smallest shear dis- 
placements being favoured. 

It is the purpose of this present paper to show 
that the martensitic transformation in (SN)= can 
be treated in a similar way to that in polyethylene. 
The only differences are that the particular phases 
have different lattice parameters and that in poly- 
ethylene the transformation is normally from an 
orthorhombic cell to a monoclinic one whereas 
in (SN)= the observed transformation is from a 
monoclinic cell to an orthorhombic cell. However, 
the direction of the transformation does not affect 
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the geometry, which depends only upon the lattice 
parameters of the two phases [14-16].  

2. Previous investigations 
2.1. The martensitic transformation in 

(SN). 
The crystal structure of the normal (phase I) 
monoclinic form of (SN)x has been determined by 
Mikulski et al. [3] as ai = 7.637A, bi = 4.153 A, 
ci = 4.439A and 7i = 109.7 ~ with space group 
P2i /a :  The unit-vett-~as been re-indexed by the 
authors so that cI is paralM-to the direction of the 
molecular chains as is conventional for polymer 
crystals [12]. This simplifies comparison of the 
unit cells and transformation modes in PE with 
those in (SN)=. Baughman et al. [t3] have shown 
that the new phase in (SN)= is obtained by 
mechanical deformation of phase I (SN)x via the 
application of compressive stresses normal to the 
chain direction. The new phase (II) has been found 
to be orthorhombic with probable space group 
P212121 and a n = 6 . 2 5 1 A ,  b ~ = 4 . 8 0 7 A  and 
Cn = 4.429 A. However, there is a complication in 
that after deformation the lattice parameters of 
the parent monoclinic phase I which is untrans- 
formed to phase II are changed. This second type 
of phase I will be called phase I* and the lattice 
parameters are ai, = 7.849A, bI, = 4.040A, 
CI, = 4.429 A and 7I* = 109.3o [13]. 

The possibility that phase I* is another crystal- 
lographic phase is not excluded. However, the X- 
ray diffraction data are consistent with identical 
unit cell symmetry and quite similar unit cell par- 
ameters for phase I and phase I*. These similarities 
and the similar X-ray diffraction intensities suggest 
that phase I* has basically the phase I structure. 
The less than three percent difference in unit cell 
parameters of phase I and phase I* may be due to 
the internal strain fields of structural defects intro- 
duced by plastic deformation. High stacking fault 
concentrations involving phase II type of pa:king 
arise in phase I as a consequence of reaction non- 
uniqueness. These defects are evident in the 
electron density maps for phase I crystals as dis- 
ordered sites. Similarly, stacking faults involving 
phase I type of packing are expected in phase II. 
These defects can lower the symmetry of phase II 
to monoclinie by producing about one percent dif- 
ference in axial lengths which are equivalent in 
defect-free phase II. 

The degree of phase I to phase II conversion in- 
creases with increasing temperature for the 
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Figure 1 The orientation relationship between the de- 
formed monoclinic phase (I*) and the or thorhombic 
phase (II) of  (SN) x [13] .  

mechanical shear process. The conversion of phase 
I to phase II and whether the untransformed 
polymer consists largely of phase I or phase I* 
appears to depend upon crystal orientation in the 
stress ~ Because of the small crystal sizes and 
the high strains employed, as well as the fact that 
brittle fracture occurs during deformation, these 
aspects have been difficult to quantify. For 
polymer fibres with low phase II component, 
phase I parameters have been observed for the un- 
transformed polymer. On the other hand, for 
polymer fibres having high phase II component, 
phase I* parameters have been observed for the 
untransformed polymer. 

The orientation relationship between phases I* 
and II has been determined by Baughman et al. 
[13] and it is illustrated schematically in Fig. 1. 
The orientation relationship is 

(0  1 0 ) I , L ( 1  1 0) i i  = 0 .2  + 1.1 ~ 

(i  00)I,L(1 lO)i I = --4.2 + 1.1 ~ 

[00 1]i* is parallel to [00 1]n 

A similar orientation relationship is observed for a 
sheared fibre consisting of a mixture of phase I 
and II. 

(0 10)IL(1 1 0)~ = --0.4 + 2.0 ~ 

(100)IL(1 1-O)ii = --5.2 + 2.0 ~ 

[0 0 1 ] I is parallel to [0 0 1 ] n 

2.2. The geometry of the martensitic 
transformation in PE 

Bevis and Crellin [16] have calculated the possible 
orientation relationships between the orthorhombic 
and monoclinic forms of PE using the theories of 
shear-induced transformations in crystalline solids 



developed by Bevis, Crocker and co-workers [14, 
15]. They determined the shear modes of the 
transformation and listed them in order of in- 
creasing shear strain. In PE the problem can be 
solved in two dimensions since the repeat distance 
of the lattice in the chain direction is identical in 
the two crystal structures. The transformations 
take place by means of a simple shear of the 
parent lattice in the plane perpendicular to the 
molecular chains. 

In PE there is an added complication. Although 
the transformations can be determined by shearing 
one lattice into the other, there are molecules not 
on lattice points in both the orthorhombic and 
monoclinic forms. This means that certain modes 
do not shear all the molecules to the correct 
positions and there are also modes which shear all 
the molecules to the correct positions but do not 
restore the lattice. The molecules away from lattice 
points in PE are related to those at the lattice 
points by means of a twist about the molecular 
axis and/or a translation of c/2. Because of this, 
Bevis and Crellin had to also consider the trans- 
formation modes between pseudo4attices where 
the molecules had been replaced by points. Bevis 
and Crellin assumed that after such a transfor- 
mation the crystal structures would be restored by 
twists and/or translations of some of the molecules. 

Good agreement has been found between "the 
predicted and observed transformations by Bevis 
and co-workers [16-18] in PE single crystals and 
in oriented bulk PE by Young and Bowden [19, 
20]. In general it is found that transformations 
involving the lowest shear strains are favoured. 

3. Calculation of the shear modes for the 
martensitic transformation of (SN)x 

The shear modes which transform the monoclinic 
(I) form of (SN)x into the orthorhombic (II) form 
have been calculated using the equations derived 
by Bevis and Crellin [16]. So that the equations 
are completely analogous to those for PE, the cal- 
culations have been performed by assuming that 
the transformation takes place by going from an 
orthorhombic to a monoclinic cell. Since the 
analysis only considers the geometry of the trans- 
formations the direction of the shear transfor- 
mation does not matter and the transformation 
can be considered geometrically to be completely 
reversible even though this may not be the case in 
the material. The observation of unit cell volumes 
and chain axis dimensions which are identical, 

within experimental error, for phase I, phase I* 
and phase II considerably simplifies the problem 
and permits a two-dimensional solution. The 
parent two-dimensional lattice C has been taken 
as the orthorhombic (phase iI) form of (SN)x. 
This has vectors C 1 (= an) and c2 (= bli) and in- 
cluded angle a (= 90~ The calculations were per- 
formed for the transformation of C into two 
slightly different product lattices P defined by P1 
(= ai or ai.) ,  P2 (= bi or bi*) and included angle/3 
(= 71 or "/I*) and U =  (uij), which is the shear 
matrix of the particular transformation. The cal- 
culations have been performed for shearing the 
orthorhombic form of (SN)x into both monoclinic 
forms. It is not known whether or not the normal 
(I) monoclinic form is transformed directly to the 
orthorhombic form (II) or initially goes to the de- 
formed monoclinic form (I*). 

The details of the calculations have been given 
by Bevis and Crellin. Only a brief outline will be 
given here. The components of  U are 

l~ij ~ ( ull U121 
U21 U22] 

It can be shown that all such two dimensional 
matrices can shear one two dimensional lattice 
into another [16] and care must be taken to try 
sufficient ones so that none are overlooked. How- 
ever, in practice it is found that only those with 
ult etc. of the order of 0, 1 or 2 give rise to modes 
which have low shears associated with them. 

The value of the shear strain associated with the 
shear process (s) is given by Equation 3 of Bevis 
and CreUin [16]. The particular modes are defined 
by a shear plane K1 and a shear direction rh.  The 
full elements of a shear transformation K1, K2, rh 
and r~ can be determined from Equation 1 of 
Bevis and Crellin for a particular U. 

Examination of the crystal structures of phase I 
and phase II of (SN)x showed that it was not 
necessary to calculate the shear modes for the 
transformation of an orthorhombic pseudo-space 
lattice to a monoclinic pseudo-space lattice as was 
done in the case of PE [16]. Half of the molecules 
are not on lattice points in both the monoclinic 
and orthorhombic forms of (SN)x , as is true for 
PE. However, for (SN)~ it is not possible to bring 
these molecules into the same orientation as the 
molecules on the lattice points by simple trans- 
lations or twists (i.e. shuffles, cf. PE). The mol- 
ecules not on the lattice points are chemically 
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TABLE I Transformation modes between the monoclinic 
(I) phase and the orthorhombic (II) phase of (SN)x. K1 
and K2 are given for theorthorhombic cell. 

N U K 1 K 2 s 

T1 10 3.08, -- 1, 0 1, 1.19, 0 0.365 
11 

T2 10 1 , -  1.34, 0 4.41, 1, 0 0.489 
01 

T3 01 1.08, 1, 0 1,--1.53, 0 0.887 
11 

T4 10 9 .01 , -  1, 0 1, 1.16, 0 0.954 
21 

T5 01 1, 1.85, 0 1 .15,-  1, 0 0.983 
10 

identical to those on the lattice points but can be 
brought into the same orientation by a 180 ~ 
rotation normal to the chain axis direction [13].  
To achieve this transformation from one chain- 
type to another in a physically reasonable fashion 
would require bond rotations cis-to-trans and 
trans-to-cis all along the chain length, such as by 
the propagation o f  a point defect. For kinetic 
reasons, this type of  motion is unlikely to pre- 
dominate. Using the notation of  Bevis and Crellin 
[16] this means that only rn = 1 modes need to be 
considered. 

The correspondence matrices, the indices of  the 
planes K1 and K2 wi th  respect to the parent C 
orthorhombic lattice and magnitude of  the shears 
(s ~< 1) for the transformation modes are listed in 
Table I for the transformation to the unsheared 
monoclinic cell and in Table II for the transfor- 
mation to the sheared monoclinic ceil. K1 is the 
shear plane, which is unrotated and undistorted 
during the transformation, and K2 is a second 
characteristic plane of  the transformation, which is 
rotated but undistorted. The modes are listed in 
order o f  increasing shear strain. T indicates the 

TABLE II Transformation modes between the deformed 
monoelinie (I*) phase and orthorhombic (II) phase of 
(SN) x. K~ and K~ are given for the orthorhombic cell. 

N U K 1 K2 s 

T1 10 2.70, -- 1, 0 1, 1.02, 0 
11 

T2 10 1,--1.18, 0 3.94, 1, 0 
01 

T3 01 1.01, 1, 0 1 , -  1.50, 0 
11 

T4 10 7.46,-- 1, 0 1, 1.10, 0 
21 

7'5 01 1, 1.84, 0 1.09, -- 1, 0 
10 

0.405 

0.532 

0.940 

0.939 

1.041 

5 8  

.transformation mode and numerals 1 to 2 represent 
the position of  the shear mode in the table. The 
subscripts 1 or 2 indicate, respectively, the direct 
mode and the reciprocal mode where K1 and K2 
are interchanged. It can be seen in Tables I and II 
that for a given correspondence matrix the shear 
planes are similar for the transformations to the 
different monoclinic cells. The shear strains (s) are 
mainly larger for the transformation to the de- 
formed monoclinic cell. 

Using the data in Table II, the  plane of  shear 
plots are drawn in Fig. 2 formodes T1 x, 2 to T51, 2. 
Examination of  these modes shows that only the 
T1 and 73 modes shear the molecules as well as 
the lattice points to their correct positions. For 
modes T2, T4 and T5 a body-centred monoclinic 
cell is produced and shuffles by half o f  the mol- 
ecules are required to restore the molecular units 
to their correct position in the monoclinic cell. 

4. Discussion 
Since the orientation relationship for the trans- 
formation between I* and II is the one that is 
known most accurately it is the one that will be 
considered in detail. The observed orientation 
relationship between the monoclinic (phase I*) 
form of (SN)x and the orthorhombic (phase II) 
form is given in Section 2.1 and Fig. 1. (0 1 0)i. is 
approximately parallel to (1 1 0)ii. Examination of  
the calculated modes in Fig. 2 shows that the two 
modes where these two planes are closely parallel 
are T12 and T31. However, closer examination 
reveals that the mode that is closest to the ob- 
served one is T31, since for this mode (1 0 0 ) I . L  
(1 10)]i is - -5  + 1 ~ At first sight therefore it 
seems that the problem is solved very simply. 
However, it is worthwhile looking into the trans- 
formation in more detail as several interesting 
points arise. 

731 is a mode whereby the transformation 
shears both the molecules and lattice points to 
their correct positions. In (SN)x the two types of  
molecule in the unit cell differ in that they "point"  
in opposite directions [13].  However, in polyethy- 
lene there is some ambiguity because the two dif- 
ferent types of  molecules in this case differ only in 
a twist and/or a small translation along the c-axis. 
It is possible in this case that some molecules can 
shuffle and move to positions whereby the lattice 
is restored after a shear which does not restore the 
lattice [16].  In (SN) x, the ambiguity does not 
occur since the lattice cannot be restored by a 
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Figure 2 (0 0 1) plane of Shear plots for the predicted transformation modes in (SN) x and listed in Table II. Where the 
open triangle is in the centre of the monoclinic cell this is a m -- 2 mode [16] and shuffles are required to restore the 
lattice. In (SN) x the transformation is from a monoclinic to an orthorhombic cell and so these particular shuffles would 
have to take place before the martensitic transformation. 

translation of  molecules along the chain direction. 
In modes where a body-centred monoclinic cell is 
produced (Fig. 2) shuffles perpendicular to the 
chain direction by  half  of  the molecules will re- 
store the correct monoclinic lattice. However, 
since it has been shown that only the 731 mode is 
observed and this does not  require any shuffles it 
appears that a mode which does not  require 
shuffles may be preferred. The 72 modes involve a 
lower shear strain and so may not  be found be- 
cause of  the need for shuffles. The T4 and T5 
modes involve about the same strains and do not  
occur. The need for shuffles in these modes is 
probably the reason why they are not  found. 

As well as the need for shuffles being a criterion 
for the activation of  a particular mode the magni- 
tude of  the shear strain is known to be important  
[16].  Usually the modes with the lowest shear 
strain are favoured. There is a problem with (SN)x 

in determining why the 731 mode is favoured 
while the T12 mode is not  found. The T12 mode 
involves a shear of  0.405 which is much less than 
the shear of  0.940 for 731 and so ought to occur 
in preference to 731. The reason why T12 does 
not  occur could be due to several causes, one Of 
which is illustrated in Fig. 3. I f  the T12 mode 
operates, the stress required to activate this trans- 
formation could also cause the orthorhombic cell 
to twin on (1 1 0) as is found for polyethylene 
[19, 20] .  This gives an orientation relationship 
between the orthorhombic and monoclinic cells 
which is very close to the one observed and 731. 
Twinning on the (1 1 0) plane of  phase II is ob- 
served in some fibres of  sheared (SN)x. However, 
this twinning might merely be a consequence of  
the characteristic (0 1 0) twinning in the parent 
phase I (SN)x. On the other hand, fibres of  
sheared (SN)x have been observed in which there 

Figure 3 A proposed mechanism to produce the observed orientation relationship by means of the T12 transformation 
and (1 1 0) orthorhombic twinning: (a) T1 ~ transformation, (b) (1 1 0) twinning, (c) Observed orientation relationship. 
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Figure 4 A schematic illustration of the change in the angles of the molecules in the unit cells for different transfor- 
mations: (a) T31, (b) T12. 

is no measurable (1 1 (3) twinning in phase II (twin 
fraction is less than 0.03) [ t3] .  

An alternative explanation for the preference of 
731 over T12 is illustrated schematically in Fig. 4. 
If the orientation of the molecules in the unit cell 
is taken into account, the rotation of the molecules 
about their long axes is much greater for the T12 
transformation than is required for T31. In the 
case of T31, the transformation can take place by 
rotations of less than 15 ~ whereas rotations of up 
to 90 ~ are required for the T12 transformation. 

At the moment it is not possible to decide 
which of the two explanations controls the choice 
of the T31 transformations or if there are any 
other explanations which can account for this 
choice. 

All the discussions so far has been concerned 
with the transformation between the deformed 
(phase I*) monoclinic cell and the orthorhombic 
(phase II) cell. The arguments are identical for the 
transformations in Table I between the un- 
deformed monoclinic (I) cell and the phase II 
structure. One interesting point is that the shear 
strains are smaller for the transformations be- 
tween the undeformed monoclinic cell and the 
orthorhombic cell (Table I) than for the trans- 
formation between the deformed monoclinic cell 
and the orthorhombic one. Again more work must 
be done to determine at what stage of the defor- 
mation the original monoclinic (I) cell is trans- 
formed into the deformed monoclinic (I*) cell. An 
X-ray investigation of the deformed material under 
load would be of interest here. 

5. Conclusions 
The transformation modes between the mono- 
clinic and orthothombic phases of the polymeric 
form of sulphur nitride (SN)x have been calculated 
using the theory of shear induced transformation 
modes in crystals developed by Bevis, Crocker and 

60 

co-workers [14-16] .  It has been shown that the 
theoretical mode with the third lowest shear strain 
(731) is the closest to the experimentally deter- 
mined mode of Baughman and co-workers [13]. It 
is thought that this mode is preferred over ones 
involving lower shear strains because all the mol- 
ecules are transformed to their correct positions and 
the rotations of the molecules during the transfor- 
mation are small. However, an orientation relation- 
ship identical to the experimentally determined 
one can be derived from the mode involving the 
lowest shear strain (T12) and (1 1 0) twinning of 
the newly formed orthorhombic cell. The transfor- 
mation in (SN)x is analogous to the stress-induced 
phase change in polyethylene. In single crystals of 
polyethylene it has been shown that the fold-plane 
exerts a strong influence on the operation of a par- 
1icular transformation mode [18]. The single 
crystals of (SN)x are macroscopic (typically 
0.5 mm x 0.5 mm x 0.05 mm) and the molecules 
are extended and so there are no fold plane con- 
straints in this case. 
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